Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053237

RESUMO

Neofusiccocum batangarum is the causal agent of scabby canker of cactus pear (Opuntia ficus-indica L.). The symptoms of this disease are characterized by crusty, perennial cankers, with a leathery, brown halo. Characteristically, a viscous polysaccharide exudate, caking on contact with air, leaks from cankers and forms strips or cerebriform masses on the surface of cactus pear cladodes. When this polysaccharide mass was partial purified, surprisingly, generated a gel. The TLC analysis and the HPLC profile of methyl 2-(polyhydroxyalkyl)-3-(o-tolylthiocarbomoyl)-thiazolidine-4R-carboxylates obtained from the mixture of monosaccharides produced by acid hydrolysis of the three EPSs examined in this research work [the polysaccharide component of the exudate (EPSC) and the EPSs extracted from asymptomatic (EPSH) and symptomatic (EPSD) cladodes] showed the presence of d-galactose, l-rhamnose, and d-glucose in a 1:1:0.5 ratio in EPSC while d-galactose, l-rhamnose, d-glucose, and d-xylose at the same ratio were observed in EPSH and EPSD. The presence of uronic acid residues in EPSC was also showed by solid state NMR and IR investigation. Furthermore, this manuscript reports the chemical-physical characterization of the gel produced by the infected cactus pear.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Opuntia/metabolismo , Opuntia/microbiologia , Doenças das Plantas/microbiologia , Polissacarídeos/metabolismo
2.
Front Mol Biosci ; 8: 705102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368232

RESUMO

Sweet proteins are the sweetest natural molecules. This aspect prompted several proposals for their use as food additives, mainly because the amounts to be added to food would be very small and safe for people suffering from sucrose-linked diseases. During studies of sweet proteins as food additives we found that their sweetness is affected by water salinity, while there is no influence on protein's structure. Parallel tasting of small size sweeteners revealed no influence of the water quality. This result is explained by the interference of ionic strength with the mechanism of action of sweet proteins and provides an experimental validation of the wedge model for the interaction of proteins with the sweet receptor.

3.
Life (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809397

RESUMO

Sweet proteins are a class of proteins with the ability to elicit a sweet sensation in humans upon interaction with sweet taste receptor T1R2/T1R3. Single-chain Monellin, MNEI, is among the sweetest proteins known and it could replace sugar in many food and beverage recipes. Nonetheless, its use is limited by low stability and high aggregation propensity at neutral pH. To solve this inconvenience, we designed a new construct of MNEI, dubbed Mut9, which led to gains in both sweetness and stability. Mut9 showed an extraordinary stability in acidic and neutral environments, where we observed a melting temperature over 20 °C higher than that of MNEI. In addition, Mut9 resulted twice as sweet than MNEI. Both proteins were extensively characterized by biophysical and sensory analyses. Notably, Mut9 preserved its structure and function even after 10 min boiling, with the greatest differences being observed at pH 6.8, where it remained folded and sweet, whereas MNEI lost its structure and function. Finally, we performed a 6-month shelf-life assessment, and the data confirmed the greater stability of the new construct in a wide range of conditions. These data prove that Mut9 has an even greater potential for food and beverage applications than MNEI.

4.
Methods Enzymol ; 642: 169-192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32828252

RESUMO

Insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) are proteins deputed to the solubilization, transport and stabilization of lipophilic and odorant compounds. These proteins have a conserved fold, which undergoes massive structural rearrangements in order to accommodate medium to large-sized lipophilic ligands. Solution NMR spectroscopy, due to its intrinsically dynamic nature, is the perfect technique to extrapolate structural information and dynamic parameters and to elucidate the conformational changes that occur upon ligand binding. This chapter will describe in detail the experimental protocols for the production and purification of isotope-labeled recombinant CSPs and OBPs for NMR studies. Detailed procedures for spectra acquisition, processing and analysis will be presented, focusing on the protein CSP-sg4 from Schistocerca gregaria as a model. Finally, experiments aimed at providing information on protein flexibility and ligand binding modes will also be described.


Assuntos
Proteínas de Insetos , Insetos , Animais , Proteínas de Insetos/genética , Espectroscopia de Ressonância Magnética , Filogenia
5.
Int J Biol Macromol ; 152: 21-29, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088237

RESUMO

Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.


Assuntos
Nanoestruturas/química , Proteínas de Plantas/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Estrutura Secundária de Proteína , Temperatura
6.
FEBS J ; 287(13): 2808-2822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31811694

RESUMO

Protein self-assembly is a ubiquitous phenomenon, traditionally studied for its links to amyloid pathologies, which has also gained attention as its physiological roles and possible biotechnological applications emerged over time. It is also known that varying the conditions to which proteins are exposed can lead to aggregate polymorphism. To understand the factors that trigger aggregation and/or direct it toward specific outcomes, we performed a multifaceted structural characterization of the thermally induced self-assembly process of MNEI, a model protein able to form amyloid aggregates under nondenaturing conditions. MNEI is also known for its extreme sweetness which, combined with a considerable thermal stability, makes the protein a promising alternative sweetener. Fourier-transformed infrared spectroscopy and electron microscopy data showed that the presence of NaCl accelerates the kinetics of fibrillar aggregation, while disfavoring the population of off-pathway states that are instead detected by native gel electrophoresis at low ionic strength. NMR studies revealed how NaCl modulates the self-assembling mechanism of MNEI, switching the process from soluble oligomeric forms to fibrils. Comparative analysis demonstrated that the presence of NaCl induces local differences in the protein dynamics and surface accessibility, without altering the native fold. We identified the regions most affected by the presence of NaCl, which control the aggregation process, and represent hot spots on the protein surface for the rational design of new mutants with controlled aggregation propensity.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas de Plantas/química , Edulcorantes/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Edulcorantes/metabolismo
7.
Front Mol Biosci ; 5: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505835

RESUMO

Endocannabinoid peptides, or "pepcans," are endogenous ligands of the CB1 cannabinoid receptor. Depending on their length, they display diverse activity: For instance, the nona-peptide Pepcan-9, also known as hemopressin, is a powerful inhibitor of CB1, whereas the longer variant Pepcan-12, which extends by only three amino acid residues at the N-terminus, acts on both CB1 and CB2 as an allosteric modulator, although with diverse effects. Despite active research on their pharmacological applications, very little is known about structure-activity relationships of pepcans. Different structures have been proposed for the nona-peptide, which has also been reported to form fibrillar aggregates. This might have affected the outcome and reproducibility of bioactivity studies. In an attempt of elucidating the determinants of both biological activity and aggregation propensity of Pepcan-9 and Pepcan-12, we have performed their structure characterization in solvent systems characterized by different polarity and pH. We have found that, while disordered in aqueous environment, both peptides display helical structure in less polar environment, mimicking the proteic receptor milieu. In the case of Pepcan-9, this structure is fully consistent with the observed modulation of the CB1. For Pepcan-12, whose allosteric binding site is still unknown, the presented structure is compatible with the binding at one of the previously proposed allosteric sites on CB1. These findings open the way to structure-driven design of selective peptide modulators of CB1.

8.
J Biol Chem ; 293(34): 13100-13111, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29959224

RESUMO

Increasing evidence shows that ß-amyloid (Aß) peptides, which are associated with Alzheimer disease (AD), are heavily glycated in patients, suggesting a role of this irreversible nonenzymatic post-translational modification in pathology. Previous reports have shown that glycation increases the toxicity of the Aß peptides, although little is known about the mechanism. Here, we used the natural metabolic by-product methylglyoxal as a glycating agent and exploited various spectroscopic methods and atomic force microscopy to study how glycation affects the structures of the Aß40 and Aß42 peptides, the aggregation pathway, and the morphologies of the resulting aggregates. We found that glycation significantly slows down but does not prevent ß-conversion to mature fibers. We propose that the previously reported higher toxicity of the glycated Aß peptides could be explained by a longer persistence in an oligomeric form, usually believed to be the toxic species.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Agregação Patológica de Proteínas , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Glicosilação , Humanos , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Homologia de Sequência
9.
Biochim Biophys Acta Gen Subj ; 1862(4): 808-815, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29288772

RESUMO

BACKGROUND: MNEI and its variant Y65R-MNEI are sweet proteins with potential applications as sweeteners in food industry. Also, they are often used as model systems for folding and aggregation studies. METHODS: X-ray crystallography was used to structurally characterize Y65R-MNEI at five different pHs, while circular dichroism and fluorescence spectroscopy were used to study their thermal and chemical stability. ThT assay and AFM were used for studying the kinetics of aggregation and morphology of the aggregates. RESULTS: Crystal structures of Y65R-MNEI revealed the existence of a dimer in the asymmetric unit, which, depending on the pH, assumes either an open or a closed conformation. The pH dramatically affects kinetics of formation and morphology of the aggregates: both MNEI and Y65R-MNEI form fibrils at acidic pH while amorphous aggregates are observed at neutral pH. CONCLUSIONS: The mutation Y65R induces structural modifications at the C-terminal region of the protein, which account for the decreased stability of the mutant when compared to MNEI. Furthermore, the pH-dependent conformation of the Y65R-MNEI dimer may explain the different type of aggregates formed as a function of pH. GENERAL SIGNIFICANCE: The investigation of the structural bases of aggregation gets us closer to the possibility of controlling such process, either by tuning the physicochemical environmental parameters or by site directed mutagenesis. This knowledge is helpful to expand the range of stability of proteins with potential industrial applications, such as MNEI and its mutant Y65R-MNEI, which should ideally preserve their structure and soluble state through a wide array of conditions.


Assuntos
Proteínas Mutantes/química , Proteínas de Plantas/química , Conformação Proteica , Edulcorantes/química , Dicroísmo Circular , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Força Atômica , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agregados Proteicos , Desnaturação Proteica , Multimerização Proteica , Edulcorantes/metabolismo
10.
Biochim Biophys Acta ; 1858(8): 1904-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179640

RESUMO

The effect of the 665-683 fragment of the HIV fusion glycoprotein 41, corresponding to the MPER domain of the protein and named gp41MPER, on the microscopic structure and mesoscopic arrangement of palmitoyl oleoyl phosphatidylcholine (POPC) and POPC/sphingomyelin (SM)/cholesterol (CHOL) lipid bilayers is analyzed. The microscopic structuring of the bilayers has been studied by Electron Spin Resonance (ESR) spectroscopy, using glycerophosphocholines spin-labelled in different positions along the acyl chain. Transitions of the bilayer liquid crystalline state have been also monitored by Differential Scanning Calorimetry (DSC). Changes of the bilayers morphology have been studied by determining the dimension of the liposomes through Dynamic Light Scattering (DLS) measurements. The results converge in showing that the sample preparation procedure, the bilayer composition and the peptide/lipid ratio critically tune the lipid response to the peptide/membrane interaction. When gp41MPER is added to preformed liposomes, it positions at the bilayer interface and the lipid perturbation is limited to the more external segments. In contrast, if the peptide is mixed with the lipids during the liposome preparation, it assumes a trans-membrane topology. This happens at all peptide/lipid ratios for fluid POPC bilayers, while in the case of rigid POPC/SM/CHOL membranes a minimum ratio has to be reached, thus suggesting peptide self-aggregation to occur. Peptide insertion results in a dramatic increase of the lipid ordering and bilayer stiffening, which reflect in significant changes in liposome average dimension and distribution. The biological implications of these findings are discussed.


Assuntos
Proteína gp41 do Envelope de HIV/química , Bicamadas Lipídicas/química , Varredura Diferencial de Calorimetria , Colesterol/química , Difusão Dinâmica da Luz , Espectroscopia de Ressonância de Spin Eletrônica , Lipossomos/química , Cristais Líquidos , Fluidez de Membrana , Lipídeos de Membrana/química , Proteínas de Membrana/química , Fragmentos de Peptídeos , Fosfatidilcolinas/química , Domínios Proteicos , Esfingomielinas/química
11.
FEBS Lett ; 590(4): 582-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26821608

RESUMO

Many age-related neurodegenerative diseases, including Alzheimer Disease (AD), are elicited by an interplay of genetic, environmental, and dietary factors. Food rich in Omega-3 phospholipids seems to reduce the AD incidence. To investigate the molecular basis of this beneficial effect, we have investigated by CD and ESR studies the interaction between the Alzheimer peptide Aß-(1-42) and biomimetic lipid bilayers. The inclusion of 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine does not change significantly the bilayers organization, but favors its Aß-(1-42) interaction. The Omega-3 lipid amount modulates the effect intensity, suggesting a peptide selectivity for membranes containing polyunsatured fatty acids (PUFA) and providing hints for the mechanism and therapy of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Ômega-3/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Materiais Biomiméticos/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Conformação Proteica , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...